Молекулярная диагностика генетических заболеваний: особенности и методы исследования
Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.
С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.
В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.
Молекулярно-генетическая диагностика – это относительно новый метод обследования организма, который позволяет определить различные вирусы и инфекции, а также точно выявить мутации генов, которые могут вызывать патологии и оценить риски возникновения различных наследственных и других заболеваний. Более того, это лишь часть возможностей, которые предоставляют возможность изучения ДНК.
Главным достоинством молекулярно-генетической диагностики является минимальный уровень медицинского вмешательства, поскольку проведение исследования проводится in vitro. Этот метод успешно применяется для диагностики заболеваний, переносимых эмбрионами, а также у основных и тяжело больных пациентов. Кровь из вены является самым распространенным материалом для исследования, но возможно выделение ДНК/РНК из других жидкостей и тканей: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.
Молекулярная диагностика является значительным шагом в направлении персонализированной медицины, которая позволяет учитывать все особенности конкретного пациента при обследовании и терапии.
Методы молекулярной диагностики находят применение в различных областях медицины. Рассмотрим некоторые из задач и сфер, где используется молекулярная диагностика:
- Обнаружение патологий. Молекулярная диагностика применяется в случаях, когда обычные методы не позволяют определить наличие инфекционного или вирусного заболевания. Она может обнаружить заболевание на ранней стадии, когда нет внешних симптомов.
- Исследование аллергических реакций. Молекулярная диагностика используется для определения аллергии. Она более точна и безопасна для пациента, так как не требует прямого контакта с аллергеном.
- Оценка рисков развития наследственных заболеваний. Молекулярная диагностика помогает выявить опасность для взрослых и детей подвергнуться различным патологиям. Некоторые болезни вызваны мутацией гена, а некоторые — генетическими особенностями. Информация о наличии генетической предрасположенности позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку и профилактику болезней с помощью изменения образа жизни.
- Перинатальная медицина. Молекулярная диагностика может определить состояние здоровья и генетические предрасположенности эмбрионов. Анализ ДНК еще не родившегося ребенка позволяет распознать синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера. Также молекулярная диагностика применяется в области вспомогательных репродуктивных технологий.
- Фармакогенетика. Молекулярная диагностика позволяет определить эффективность препаратов при лечении тяжелых заболеваний, например, онкологических.
- Спортивная медицина. Молекулярная диагностика может помочь выявить спортивные перспективы ребенка и определить, какой вид занятий максимально пользуется здоровью.
Медики с большим интересом относятся к возможностям молекулярной диагностики. Применение персонализированной терапии, учитывающей генетические особенности каждого пациента, позволит избежать побочных эффектов лекарств и снизить затраты на лечение. В США проблема побочных воздействий лекарств входит в пятерку самых распространенных причин госпитализации и смерти.
Генетические исследования обычно проводятся, когда пациент стремится получить информацию о своем здоровье и состоянии организма. Приведем несколько конкретных ситуаций, в которых рекомендуется обращаться к генетическим исследованиям:
- Для установления точного диагноза. Нередко бывает, что пациентам неправильно определяют аллергены или появляется задержка в диагностировании вирусных заболеваний, что может затруднить эффективное лечение. В таких случаях результаты генетического анализа могут быть полезны.
- Для профилактики возможных патологий. Если человек знает о своем повышенном риске заболевания раком или сердечно-сосудистыми заболеваниями, то проведение генетических исследований может помочь ему предпринять соответствующие меры по профилактике таких заболеваний и отказаться от вредных привычек.
- Для повышения эффективности лечения. Например, онкологические заболевания имеют множество вариантов терапии. Если правильно определить, какой из методов будет наиболее эффективным, можно сэкономить время, а иногда — и спасти жизнь пациента.
Кроме того, существует ряд генетических исследований, связанных с планированием и рождением ребенка. Чаще всего родители обращаются к этим исследованиям по следующим причинам:
- Для изучения генетической совместимости родителей, оценки рисков возможных наследственных заболеваний у будущего ребенка.
- Для обнаружения возможных патологий плода в ранних стадиях беременности.
- Для диагностики возможных заболеваний и аллергических реакций ребенка после рождения.
- Для определения того, какие виды спорта, питания и образа жизни наиболее подходят ребенку.
- Для установления отцовства или материнства.
Статья "Этапы молекулярно-генетических исследований"
Если вы намерены провести молекулярно-генетическое исследование, то необходимо знать, что любой его метод включает в себя ряд этапов:
- Взятие биоматериала. Это может быть кровь пациента или другой материал. После того, как биоматериал получен, он маркируется и транспортируется в лабораторию.
- Выделение ДНК/РНК. Для проведения анализов требуется чистая ДНК или РНК. Существует несколько методов извлечения, которые позволяют получить эту материю надежно и без потерь.
- Проведение исследований по выбранному методу. После подготовки образцов с помощью ДНК или РНК происходит проведение молекулярно-генетических исследований. Конкретный метод изучения зависит от цели исследования.
- Изучение и интерпретация результатов. Полученные результаты нужно обработать и проанализировать. Для этого подойдет программное обеспечение для анализа данных. Номер индивидуального протокола лучше сохранять, чтобы в дальнейшем иметь возможность его прочитать.
- Выдача заключения. На последнем этапе исследования вы получите заключение, которое будет содержать описание метода, используемых реактивов, конечных результатов и других особенностей этого исследования.
Таким образом, любое молекулярно-генетическое исследование должно пройти эти этапы, чтобы быть завершенным.
Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.
Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.
Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.
Методы молекулярной цитогенетики являются эффективным средством для выявления наследственных заболеваний, психических отклонений и врожденных пороков развития. Цитогенетический анализ проводится для изучения хромосом с помощью специальных микроматриц, нанесенных на ДНК-чипы. Для этого из образца крови выделяют лимфоциты, помещая их на 48-72 часа в питательную среду, после чего проводят их исследование. Обычно данный анализ назначается нечасто, главным образом для изучения причин бесплодия и невынашивания беременности, а также для уточнения диагноза у детей при подозрении на врожденные заболевания. Точность цитогенетического анализа очень высока, однако метод является трудоемким и длительным, так как результат можно получить только через 20-30 дней после сдачи исследуемого образца.
Одним из достоинств цитогенетического анализа является его специфичность, которая позволяет выявлять практически без погрешностей небольшое количество патологий, таких как, например, аутизм. Но в то же время данный метод имеет и недостатки, так как не способен выявить многие другие наследственные заболевания.
Метод полимеразной цепной реакции (ПЦР) – это фундаментальный и, до сегодняшнего дня, наиболее распространенный метод в молекулярной диагностике. Изобретенный в 1983 году, этот метод отличается высокой точностью, чувствительностью и скоростью проведения исследования. Его использование позволяет выявлять ряд патологий, среди которых такие, как ВИЧ, различные вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.
Подход для проведения диагностики на базе ПЦР предполагает выбор участка ДНК и многократное его дублирование с помощью специальных реагентов лаборатории. Для проведения диагностики исследуются различные биоматериалы, среди которых кровь, слюна, моча, выделения из половых органов, плевральная и спинномозговая жидкость, ткани плаценты и др.
Флуоресцентная гибридизация (FISH) – это специфический молекулярный метод исследования, фокусирующийся на уникальных нуклеотидных соединениях отдельно взятой хромосомы или ее сегментах. Для этого используются меченые флуоресцентными маркерами короткие ДНК-последовательности, которые выступают в качестве зондов и позволяют обнаружить атипичные гены. Исследовать можно кровь, костный мозг, плаценту, ткани эмбриона, биопсии и другие биоматериалы. Однако, образец необходимо доставить в лабораторию как можно быстрее после его изъятия.
В основном FISH-метод используется в онкологии (например, для отслеживания остаточных злокачественных клеток после химиотерапии) а также в пренатальной диагностике (для выявления риска развития у плода врожденных пороков), гематологии. Метод FISH, с точностью около 0,5%, является чрезвычайно чувствительным в обнаружении поврежденных фрагментов ДНК. Результаты исследования получают в течение 72-х часов.
Стоит отметить, что FISH-метод, более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только с целью подтверждения или опровержения предполагаемого диагноза.
Микрочипирование – инновационный метод диагностики, часто используемый в медицине. Он основан на использовании меченных флуоресцентом последовательностей ДНК и позволяет получать точные результаты анализов на основе биоматериала.
Для проведения анализа требуется получить образец ДНК/РНК из любого биоматериала. С помощью микрочипа ДНК-микрочип, представляющего собой основание из стекла, пластика или геля, на который нанесены микротесты длиной от 25 до 1000 нуклеотидов, можно проводить до нескольких тысяч тестов.
Этот метод диагностики точен и чувствителен, а также дает возможность изучать генетическую предрасположенность к определенным заболеваниям. Он применяется в онкологии и кардиологии. Важно отметить, что результаты исследования становятся доступными уже через несколько дней после забора материала.
Молекулярная диагностика может использоваться в разных областях медицины и является неинвазивным способом обследования организма. Но, к сожалению, в России использование этого метода диагностики в клиниках ограничено.
Важно отметить, что любая информация о здоровье и медицине, представленная в данной статье, служит исключительно ознакомительной цели и не должна использоваться для самодиагностики или самолечения.
Фото: freepik.com